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Abstract 

We present an extension of  the classical Fermat principle in optics to stationary space- 
times. This principle is applied to study the light rays joining an event with a timelike 
curve. Existence and multiplicity results of  light rays are proved. Moreover, Morse Rela- 
tions relating the set of  rays to the topology of  the space-time are obtained, by using the 
number o f  conjugate points of  the ray. The results hold also for stationary space-times 
with boundary, in particular the Kerr space-time outside the stationary limit surface. 
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1. Introduction and statement of the results 

In General Relativity a gravitational field is described by a 4-dimensional Lor- 
entzian manifold (space-time) (M, ( -, • ) ), where M is a smooth connected 
manifold and ( -, • ) is a Lorentzian metric, i.e. a metric tensor having index 1 
(cf., e.g., Ref. [ 19 ] ). The points of  a space-time are usually called events. 

In the study of  the geometrical and physical properties of  a space-time, geo- 
desic curves play a basic role. We recall that a smooth curve on a Lorentzian 
manifold 7: ]a, b[--, M is said to be a geodesic, if 

Ds~=0,  (1.1) 
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where ~ is the tangent vector field along y, and Ds~ is the covariant derivative of 
along y, with respect to the Lorentzian metric ( -, • ). 
It is well known that if7 is a geodesic, there exists a real number E(y) such that 

for any s~ ]a, b[: 

E ( y ) =  ( ~ ( s ) , ~ ( s ) ) .  

The geodesic y is called timelike, lightlike or spacelike ifE(y) is negative, null or 
positive, respectively. 

The most interesting cases, from a physical point of view, occur when E(y) is 
nonpositive (such geodesics are called causal). Timelike geodesics represent, in 
a space-time, the world lines of free falling particles (i.e. only gravity acts ), while 
lightlike geodesics represent the trajectories of light rays. (A spacelike geodesic 
has no physical meaning, because travelling on it, a particle should be faster than 
light. However, they are useful in the study of the geometry ofa Lorentzian man- 
ifold, for instance in the geodesic connectedness. ) 

Global properties about geodesics have been widely investigated. Avez and Sei- 
fert were the first to show that they every couple of causally related points of a 
globally hyperbolic Lorentzian manifold are joined by a causal geodesic (see Refs. 
[ 1,24 ] ). Multiplicity results for timelike geodesics joining two causally related 
points on certain globally hyperbolic Lorentzian manifolds have been proved in 
Ref. [25]. Moreover, a Morse theory for the timelike geodesics joining two 
causally related points of a globally hyperbolic manifold has been developed in 
Ref. [25 ] on the space of the causal piecewise Cl-path. 

Recently, some results about the geodesic connectedness of Lorentzian mani- 
folds have been obtained by global variational methods (see, for instance, Refs. 
[5,6,14]). 

Moreover, in Ref. [25 ] Uhlenbeck has developed (on the space of the null 
piecewise C~-path) a Morse theory for the lightlike geodesics joining an event 
(the source of light), with a timelike curve (the observer), on a globally hyper- 
bolic manifold. Other existence results for lightlike geodesics have recently been 
obtained in Ref. [ 9 ] on static space-times. 

In the papers [ 1,24,25 ], the global hyperbolicity of the Lorentzian manifold is 
basic. However, many physically interesting Lorentzian manifolds are not glob- 
ally hyperbolic, because they have a topological boundary (for instance, they are 
open subsets of a larger manifold). 

Some results on the existence and multiplicity of timelike geodesics, and the 
geodesic connectedness for static and stationary Lorentzian manifolds with 
boundary, have recently been obtained in Refs. [3,4,12 ]. These results can be 
applied to physically relevant space-times as the Schwarzschild, Reissner- 
Nordstr6m and Kerr space-times. 

In this paper we prove existence and multiplicity results of lightlike geodesics 
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joining an event with a timelike curve of Lorentzian product manifolds with 
boundary. Moreover, we develop a Morse theory for such geodesics. We consider 
a Lorentzian product manifold (/~, ( - ,  • ) z), such that 

/17/=/17/o × Qq, (1.2) 

where/0o is a smooth manifold, and ( -, • ) is conformal to a stationary metric, 
i.e. ( - ,  ")z is defined as follows: for any z = ( x ,  t ) e /Oo×R and for any (= 
(~, "r) e TflV/- T~/~o XR, 

(~', ( )z =a ( x ,  t) [ (~, ~)~ + 2 ( 5 ( x ) ,  ~j)xZ- f l (x ) r  2 ] , (1.3) 

where a(x ,  t) and f l(x)  are smooth positive scalar fields on/V/and/V/o, respec- 
tively, ( . ,  • )x is a Riemannian metric on /0o  and fi(x) is a smooth vector field 
on Mo. 

A classical example of a space-time satisfying ( 1.2 ), ( 1.3 ) is the Kerr space- 
t ime (cf. Ref. [ 15 ] ), which is the solution of the Einstein equations in the empty 
space, corresponding to the gravitational field produced by an axially symmetric 
body rotating around its axis. Some open subsets of the Kerr space-time (and 
also of the Schwarzschild and Reissner-Nordstrrm space-times, see Ref. [ 3 ] ) 
have a topological boundary which is light-convex (see section 7 ), according to 
the following definition. 

Definition 1.1. Let (~r, ( . ,  • ) ) be a Lorentzian manifold and M a connected 
open subset of ~ t  with boundary aM. We say that M h a s  a light-convex boundary 
aM, if any lightlike geodesic z : [a,b] ~ M w  aMwith  z(a) ,  Z(b)  eM, has support 
z( [a,b] ) ~ M. 

Remark 1.2. The notion of light-convex boundary is independent of conformal 
changes of the metric, because the lightlike geodesics are independent,  up to a 
reparametrization, of a conformal change of the metric. 

In this paper we consider a Lorentzian manifold (/V/, ( . ,  • ) ) which satisfies 
( 1.2 ), ( 1.3 ), and an open connected subset Mo of/17/o. Setting 

M = M o X R ,  

M is an open connected subset of/V/, having boundary OM= 0MoXR. We shall 
assume that: 

OMo is a smooth submanifold ofl~o ; ( 1.4 ) 

Mo u OMo is complete with respect to the Riemannian structure of Mo given by 

<. , .  >, = < . , .  >~ lp(x)  (1.5) 

(i.e. any geodesic x :  ]a, b [ ~ M o  with respect to the Riemannian structure 
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< ", "> 1, can be extended to a continuous curve X : [ a,b ] ---,Mo u OMo). 
Let Zo= (Xo, to) be a point of M = M o × R ,  x l e M o \ { X o } ,  and consider the (ti- 

melike) vertical line 7= { (xl, s), seR}. The first result of this paper is the follow- 
ing existence theorem. 

Theorem 1.3. Let  Mo satisfy (1 .4) ,  ( 1.5 ). Assume  that: 

OM= OMo × R is light-convex ; ( 1.6) 

sup (t~(x), fi(x) ) x / f l ( x )  < + o o .  (1.7) 
x • / V / O  

Then there exists a lightlike geodesic 

z + ( s ) = ( x + ( s ) , t + ( s ) )  : [0,11--,M, 

jo ining Zo= (Xo, to) and the vertical line 7={(xl ,  s), seR} (i.e. z+(O)=zo  and 
x + ( 1 ) = xl ), such that t + ( 1 ) > to. Moreover, there exists another lightlike geodesic 

z - ( s ) = ( x - ( s ) ,  t - ( s ) ) :  [0,1 ]---,M, 

jo ining Zo and 7, such that t -  ( 1 ) < to. 

Remark 1.4. Notice that if Mow OMo is complete with respect to the Riemannian 
structure ( -, • )x and SUpx~Mo ( 6 ( x ) ,  6 ( x )  )x  < +oo, then (1.5) and (1.7) are 
certainly satisfied if 

0 <  v< f l ( x )  < N <  +oo for any x e M o  . 

Then the open subsets of the Kerr space-time considered in Section 7 satisfy 
(1 .4) - (1 .7) .  

If the topology of Mo is nontrivial, we have the following multiplicity result. 

Theorem 1.5. Assume that Mo is non contractible and ( 1.4 ) -  ( 1.7 ) hold. Then there 
exist two sequences z ,, ÷ = ( X +m , t +m ) : [ O, 1] ~ M and  z ;~ = ( X m , t in ) :  [ O, l ] ~ M o f  
lightlike geodesics joining Zo with 7= { (xl, s), seR}, such that 

lim t m + ( 1 ) = + ~  and lim t ; , ( 1 ) = - c ~ .  
m ~ o o  r n ~ o o  

The conclusion of Theorem 1.5 suggests the following physical interpretation. 
Consider a star, whose spatial coordinate is Xo, which explodes at t ime to. An 
observer which is in xl (for example on the earth), observes the explosion in a 
sequence of" ins tants"  {tm}me~, tm m + ~ .  
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Remark 1.6. The results of Theorems 1.3 and 1.5 hold even ifxo=x~ when Mo is 
compact, giving existence and multiplicity results of light rays (x (s), t (s) ) whose 
spatial component  x ( s )  is a periodic curve. 

The proofs of Theorems 1.3 and 1.5 rest upon a variational principle which is 
a Lorentzian version, adapted to stationary metrics, of the classical Fermat prin- 
ciple in optics (for other results on the Fermat principle in General Relativity we 
quote Ref. [22 ] ). By means of this variational principle, the study of the lightlike 
geodesics joining Zo = (Xo, to) with 7= { (xL, s), se R} is equivalent to the research 
of the critical points of a suitable functional defined on the infinite dimensional 
manifold t2 ~ (xo, xl, Mo) consisting of the absolutely continuous curves on M0, 
joining Xo and xl, and having square summable derivative. The critical values of 
such a functional are the time-intervals t(1 ) - t o  of the lightlike geodesics 
z ( s )  = ( x ( s ) ,  t (s)  ). A similar variational principle has been used in Ref. [25 ] on 
the space of the piecewise Cl-path. 

The variational principle in Theorem 2.8 allows one to get, under non-degen- 
eracy conditions, a Morse theory for the lightlike geodesics joining zo= (Xo, to) 
with the line 7= { (xl, s), seR}. This theory relates the set of such geodesics with 
the topology of the space of the continuous curves joining two given points of M. 

Before stating the Morse relations, we recall the following definitions. 

Definition 1.7. Let (M, ( -, • ) ) be a Lorentzian manifold and z be a geodesic 
joining Zo with zL in the interval [0,1 ]. A point z ( s ) ,  s~ ]0,1 ], is said to be con- 
jugate to Zo along z if there exists a vector field ( #  0 along z l to.~ which is solution 
of the system 

D~C+R(~, C)~=O, 

~(0) =((s)----0, (1.8) 

where R( . ,  - ) is the curvature tensor of (M, ( -, • ) ). The maximal number  of 
linearly independent solutions of ( 1.8 ) is called the multiplicity of z (s). 

Definition 1.8 Let z : [0,1 ] ~ M  be a geodesic. The geometric index # ( z )  is the 
number  of conjugate points z ( s )  (se ]0,1 ] ) to z(0)  along z, counted with their 
multiplicity. 

Remark 1.9. The geometric index of a geodesic can be + oo (see Ref. [ 16 ] ). How- 
ever, it is always finite on a stationary Lorentzian manifold (sf. Theorems 6.1 
and 6.2 ). 

Remark 1.10. For any lightlike geodesic the notions of conjugate point, multiplic- 
ity of conjugate points and geometric index are independent of conformal changes 
of the metric (see also Remark 1.2 ). 



164 D. Fortunato et al. / Geometry and Physics 15 (1995) 159-188 

We introduce now the notion of non-degeneracy for lightlike geodesics joining 
an event with a timelike curve. 

Definition 1.11. A point Zo= (Xo, to) and a timelike curve 7 o f a  Lorentzian man- 
ifold satisfying (1.2), are said to be nonconjugate if every lightlike geodesic 
z : [0,1 ] o M j o i n i n g  Zo with ~, is nondegenerate, i.e. z(0)  and z( 1 ) are noncon- 
jugate along z. 

Now let Xbe  a topological space and ~: a field. We denote by Pr(X) -Pr (X ,  ~:) 
the Poincar6 polynomial 

Pr(X) = ~ ilk(X, ~)r k , (1.9) 
k=0 

where, for every integer k, ilk(X, F) is the kth Betti number of Xwith coefficients 
in ~:, i.e. ilk(X, D:) = d i m  Hk(X, F), where Hk(X, ~:) is the kth singular homology 
group of Xwith coefficients in 0:. Since 0: is a field, H,(X ,  F) is a vector space. 

The following Morse relations hold. 

Theorem 1.12. Assume that ( 1.4)-(1.7) hold. Assume also that Zo= (Xo, to) and 
y= { (xl, s ), s ~ }  are nonconjugate, according to Definition 1.11. Let 

Z + = { z = ( x, t ) : [0,1 ] o M, lightlike geodesic 

joining Zo with y and such that t ( 1 ) > to ) .  

Moreover let g2 be the space o f  the continuous curves joining Xo and Xl in Mo, 
equipped with the uniform topology. Then 

ratz)=Pr(g2)+ ( l +r)Q(r)  , (I.10) 
z~Z + 

where Q (r) is a formal series with natural coefficients (possibly + oo ). 

Theorem 1.12 holds also for the set Z -  of lightlike geodesics joining Zo with y 
in the past ofzo, i.e. such that t( 1 ) <to. 

If Mo does not have a boundary, Theorems 1.3, 1.5 and 1.12 can be proved 
analogously by a simpler proof. The results proved in this paper were announced 
in Ref. [ 11 ]. 

2. The variational principle 

In this section we prove the variational principle used in the proofs of Theo- 
rems 1.3, 1.5 and 1.12. 

Let ( M, (- ,  • ) z) be a Lorentzian manifold satisfying ( 1.2 ), ( 1.3 ). By the well 
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known Nash embedding Theorem (cf. Ref. [ 18 ] ), the Riemannian manifold ( Mo, 
( ", ")x) is isometric to a submanifold of A N (with N sufficiently large ) equipped 
with the Euclidean metric. Hence, we can assume that Mo is a submanifold o f ~  n 
and ( -, • )x is the Euclidean metric o f ~  N, which will be denoted by ( -, • ) . 

Set I =  [0,1 ]. For every k e n  let HI'2(L R k) be the Sobolev space of the abso- 
lutely continuous curves, whose derivative is square summable. It is a Hilbert 
space with norm 

1 1 

0 0 

where ~ denotes the derivative o f x  and I1" II the usual norm of L2(L AN). 
Now, let Xo and x~ be two points of  Mo, and 

g2 ~ =g2' (Mo, Xo, x~ ) = {x~H~'Z(L ~7~ N) I X(I) C__ Mo, x(O) =Xo, x( 1 ) =x,  }. 

It is well known that £2' is a submanifold of H~'2(/, R N) and, for every xc g2 ~ , the 
tangent space at t21 is 

Txt2' = {@H ~'2 (L A N) I ~(s) e Txt~)Mo for any seL ~(0) =~( 1 ) =0} 

(cf., e.g., Refs. [20,23] ). 
Now, let to, t~ ~ and consider 

Hl'2(to, t , ) = { t ~ H " 2 ( L R )  I t (0 )= to ,  t ( 1 ) = t , } .  

H~'Z(to, t l) is a closed affine submanifold of H ~'2 (L R), whose tangent space is 

H~'2(I ,~)={xeH' '2(L~)  I r ( 0 ) = r ( 1 ) = 0 } .  

Finally, let Zo= (Xo, to) be a point of M, x~ ~ Mo and 2 ~ .  We consider the path 
space of the H~'2-curves joining Zo and (xt, 2), 

= ~e~(Zo, xt ) =g21 ×Hl'2(to, 2) , 

Obviously, for every z=  (x, t) ~ ~ ,  the tangent space to ~ is 

T~ ~L~ = T~[21X H~'2 (/, R) . 

On the manifold Y'=O~×H~'2(L ~),  consider the action integral f :  3(--.~, 
given by 

1 

l f f (z )  = ~ (~, ~) ,  ds,  
o 

which is a a smooth functional on Lr. We put 

f~ =f l  ~ .  

It is well known that for every 2~q, the critical points off~ are the geodesics join- 
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ing Zo= (Xo, to) and za= (x~, 2). The search of geodesics joining Zo and z~, i.e. the 
critical points off~, is more difficult than in the Riemannian case. Indeed, f~ is 
strongly indefinite, and the Morse index of its critical points is + oo. 

In this section, we shall prove a variational principle which allows us to reduce 
the search of light rays joining Zo= (Xo, to) with the timelike vertical line 7= { (x~, 
s), s ~ } ,  to the search of the critical points of a functional defined only on 12 ~, 
bounded from below, and whose critical values are the t ime intervals t( 1 ) - to ,  of 
the light rays (x(s), t (s)). Without loss of  generality, we can assume that to = 0. 

Since the lightlike geodesics and the notions of conjugate point, multiplicity of 
a conjugate point, and geometric index, are independent of conformal changes of 
the metric (cf. Remarks 1.2 and 1.10), we can divide the Lorentzian metric 
(- ,  . )~ by the factor or(x, t)fl(x). So, we can consider the new metric (again 
denoted by ( . ,  • ) z): 

( ( ,  ( ) z =  (~, ~) ,  + 2 ( 6 ( x ) ,  { ) I Z - C ,  

for all z=(x,  t )eM and (=(~ ,  z)eT=M=TxMoX~, where (- ,  "~1 denotes 
<. , .  ) / # ( x ) .  

Notice that, by (1.5), Mo~ OMo is complete with respect to the Riemannian 
metric ( . ,  • ) ~. Moreover, by the Nash Embedding Theorem, we can assume that 

(~, ( )z  = (~, ~) + 2 ( 6 ( x ) ,  ~)~. ~2 , (2.2) 

where ( . ,  • ) is the Euclidean scalar product in W v. 
Consider now the energy integral for the metric (2.2), i.e. 

1 1 

l I f ( z ) = ~  ( i , ~ ) z d s = ~  (2.3) 
0 0 

and, for any 2s~,  

A=fl   . 

Let (Ofa/Ox)(x, t ) :  Tx.QI-,R and (Ofa/Ot)(x, t):H~'Z(I,~)--,~ be the partial 
derivatives off~. Moreover, let 

N~ = {z= (x, t)s.e~ I ( Ofa/Ot) (x, t ) = 0 } .  

The following lemma, essentially proved in Ref. [ 12 ], holds: 

Lemma 2.1. For any 2E~, N~ is the graphic of the smooth map ~ : g21-~H 1 , 2 ( 0 ,  

2), given by 
I 

• ~(x)(s)= i ( O ( x ) , J c ) d r + s ( A - f  (~(x ) ,Jc )dr ) .  (2.4) 
0 0 

(Recall that we have assumed that to= O. ) 
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Now consider the restriction of f~ to the graphic of qh, i.e. the functional 
Ja : t21--,R, 

Ja(x )=fa(x ,  ~a (x )  ) , (2.5) 

the following variational principle, which is essentially contained in Theorem 2.2 
of Ref. [ 12 ], holds. 

Theorem 2.2. Let z= (x, t) • 4 .  Then the following propositions are equivalent: 
( a ) z=  ( x, t) is a critical point o f  fa; 
(b) (i) t=  ~).(x), 

( ii) x is a critical point o f  Ja. 
Moreover i f  ( a ) or (b) is true, 

f~(z) =J~(x) .  (2.6) 

By (2.3) and (2.4), the explicit formula for Ja is 

I 1 1 2 4 
0 0 0 

(2.7) 

Our goal is to find geodesics z= (x, t) joining Zo with a point (x~, 2) and such 
that 

£(z) = J~(x) = 0 .  

To this aim, we consider 2 as a variable and the functional H : t2 ~ XR--,R given 
by 

H ( x ,  2) =2Ja(x) 

1 1 1 2 

0 0 0 

Then, by Theorem 2.2., the search of the lightlike geodesics joining Zo= (Xo, 0) 
with the vertical line 7= { (x~, s) ,  s e ~ }  is equivalent to the search of the points 
(x, 2 ) • t2 ~ × R satisfying 

H(x, 2 ) = 0 ,  

OH (x, 2) =0 (2.9) 
Ox 

The following theorem shows that the problem (2.9) is equivalent to the search 
of the critical points of a suitable functional F : g2~R.  The functional F can be 
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defined using an abstract framework. 

Theorem 2.3. Let . I t  be a Hilbert manifold and let H : J[× R---,R be a smooth func- 
tional. Put 

~ = { ( x , 2 ) ~ c X R  I H(x, 2 ) = 0 } ,  

and assume that f¢ is the graphic o f  a smooth functional F : Jl¢--,R. 
Then, i f  $ is a critical point ofF, then (:~, F(:~) ) solves (2.9). 

(2.10) 

Proof Since ~ is the graphic of the functional F, for every x ~ ' ,  we have: 

n ( x ,  F ( x ) )  = O. 

Differentiating gives 

OH OH 
O= ~ x  (x, F (x )  ) + ff-~ (x, F(x )  )F' (x) . (2.11) 

Then, if~? is a critical point ofF,  by (2.1 1 ) (2, F(X) ) solves (2.9). [] 

Remark 2.4. Observe that conversely, if ($,/l) solves (2.9) and 
(OH/d2) (:~, ,0 #0 ,  then ~? is a critical point ofF,  and F(Y) =;~ 

Now, we apply the results of Theorem 2.3 and Remark 2.4 to the functional 
H(x,  2) defined by (2.8). In this case, the equation H(x,  2) =0 is solved by 

2= ~ (~(x) ,  2 )  ds_+ (2, 2) ds+ (~(x), 2) ~ ds. 
0 0 

(2.12) 

Then, the set f¢ in Theorem 2.3 consists of two branches, if+ and ~_, which are 
respectively the graphic of the functionals F+, F_ : I2 ~ --+DR defined as follows: 

F+ (x) = (2 ,2 )  ds+ (~(x), 2)2 ds + (6(x), 2) ds, 
0 0 

(2.13) 

F _ ( x ) = -  (2 ,2)  ds+ (~ (x ) , k )Zds  + (~(x), 2) ds. 
0 0 

(2.14) 

Remark 2.5. Since Xo#X~, the functionals F+ and F_ are smooth. Ifxo=x~, the 
functional is not differentiable only at the constant curve Xo. 

Remark 2.6. If H i s  defined by (2.8), for every (x, ;t)e ~, the assumption (OH/ 
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02 ) (x, 2) ~ 0 of Remark 2.4 holds. Indeed if 
I 

(x,,l)---2 
0 

since t I (x ,  2) =0, (2.8) and (2.15) give 

| 1 

0 0 

which implies that x is the constant curve xo. 

Remark 2.7. By the H~lder inequality: 

1 2 1 

0 

Then, since Xo#X~, (2.8), (2.13), (2.14) and (2.16) give 

(2.15) 

(2.16) 

F + ( x ) > 0  for any x~121 , (2.17) 

F _ ( x ) < 0  foranyx~t2 ~ . (2.18) 

From Theorem 2.3 and Remarks 2.4-2.7, the following variational principle 
holds: 

Theorem 2.8. Let x be a critical point ofF+ and ~ as in ( 2.4 ). Then, i f 2 = F+ ( x ) , 
(x, ,~a(x) ) is a lightlike geodesicjoining zo= (Xo, O) with (x~, F+ (x) ). Moreover, 
i f  z= (x, t) is a lightlike geodesicjoining Zo with zl = (x~, tl ) and tt > 0, then x is a 
critical point ofF+ and F+ (x) = t~. 

The same result holds for the critical points o f F _  and the lightlike geodesics 
joining zo with zl = (x~, t~ ) and t~ <0. 

Remark 2.9. Since, for every xeg21, 
1 

02 
0 

then, ifxoCx~, for every x~ f¢ we have, 

OH(x,  2)<O for every xe f¢+ 
02 

OH 
02 ( x , 2 ) > 0  foreveryx~f¢_.  

(2.19) 

(2.20) 
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3. The penalization argument 

In Section 2 we presented a variational principle for the lightlike geodesics 
joining Zo = (Xo, 0) and the timelike line ? = { (Xl, s), ss •}. For the search of such 
geodesics, it suffices to find the critical point of  the functionals F+ : £2 ~ - ,~,  

We shall consider only the functional F+ because the functional F_ can be 
studied analogously. In this section we analyze some properties ofF+ that will be 
useful in proving Theorems 1.3, 1.5 and 1.12. 

First of  all, notice that, if Xo # xl, F+ is a smooth functional, while, if Xo = xl, 
F+ is not differentiable only at the constant curve x (s) -x0.  Moreover the follow- 
ing Lemma holds: 

Lemma 3.1. Assume that 

D =  sup ( ~ ( x ) , ~ ( x ) )  < + o o .  (3.1) 
xeMo 

Then 

(i) inf F + ( x ) > 0 ,  
x ~  I 

(ii) lira F+ ( x ) =  + o o ,  
I lx l l ,  ~ + oo 

where, foreveryxeQl, iixl 1 2, = f ~ < ~ ,  ~ )  (is. 

Proof By Remark 2.7, F+ is a positive functional. Moreover 

F + ( x ) =  (~ ,~)  ds+ (6(x),~>2ds + (O(x),:~> ds 
0 o 

1 1 1 2 

o o 

~ / i  (~c' '~)ds+i(cS(x)'yc)2ds-i(~(x)'~c)dso o 

(by Remark 2.9 ) 

>- Co I1~112/I1~11. = Co I1~11., 

where Co is a suitable constant depending on D (cf. ( 3.1 ) ). 

(3.2) 
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From (3.2) we deduce (ii) and 

F+ (x) >cod(xo, x 1 ) • 0 ,  (3.3) 

(where d is the Riemannian distance induced by the Riemannian metric ( . ,  • ) 
of Mo). Finally (3.3) gives (i). [] 

In order to find critical points of  the functional F+, the Palais-Smale compact- 
ness condition plays an important role. 

We recall that a smooth functional I : X ~ ,  defined on a Hilbert manifold X, 
is said to satisfy the Palais-Smale condition at the level c ~  ((P.S.)c) if every 
sequence {Xk}k~ c X such that 

I(xk)---~ C, (3.4) 

lip (Xk) II--~ 0 ,  (3.5) 

possesses a converging subsequence. Here II • II denotes the norm induced on TxX 
by the Riemannian metric on X and I' the gradient off. 

Since Mo is not a complete Riemannian manifold (because of the presence of 
the boundary OMo), g'~l=~"~l(Mo, X0, XI) (which is an open submanifold of 
~ =g2~ (Mo, Xo, xt ) ) is not complete. For this reason the functional F+ does not 
satisfy the Palais-Smale condition. Indeed, a sequence in gT which satisfies ( 3.4 ) 
and (3.5), may converge to a curve x which "touches" the boundary of Mo, and 
therefore x¢ £2 ~ . 

In order to overcome this difficulty, we introduce a penalization argument. 
Since OMo is a smooth submanifold of AT/o, there exists a smooth function 
q~ : /17/o ~ ,  such that 

Mo ={X~o  I ~(x) >0}, 

OMo={X~o I ¢ (x )=O} ,  

grad ~(x)  ~0  for any xeOMo, 

(3.6) 

(3.7) 

(3.8) 

where grad q~(x) denotes the gradient of  q~ at x, with respect to the Riemannian 
structure ( - ,  - ) .  Moreover for any z~ M we set 

• (z) - ~(x ,  t) = ¢ ( x ) .  

Notice that, denoting by lethe gradient of • with respect to the Lorentz structure 
( "," )z, we have 

le~(z) = (grad ¢(x) ,  O) . 

For every e> O, consider the penalized functional f~ : &r--.•, 
1 f '  f i (z)=fi(x,  t )=f ( z )+e  ~-5-i--~ ds, (3.9) 
0 
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wherefis defined by (2.1). Moreover, for any ;tenq, let f~,~ be the restriction off~ 
to ~ = / T  XH1'2(0,2) . 

Since the penalization term does not depend on the variable t, the statement of 
Theorem 2.3 holds also for the functionalf,,a. Therefore the search of the critical 
points off~,a is equivalent to the same problem for the functional 

1 

J, ,~(x)=Ja(x)+e ~ 1 02---~ ds, (3.10) 
0 

where Ja is defined by (2.7). On the other hand, the functional He(x, 2) =J~,a(x) 
satisfies the assumptions of Theorem 2.3. 

Therefore considering the functional F~ : Qt ~ given by 

F . (x)=  (2 ,2)  ds+ (J(x) ,2)Zds+e - 7 - ~ d s  
0 0 

1 

+ j  (J (x) ,  2)  cls, (3.11) 
0 

the statements of Theorems 2.3 and 2.8, Remarks 2.4-2.7 and 2.9 still hold for 
the functional F,. 

In order to prove the Palais-Smale condition for the functional F~ (e> 0), the 
following lemmas are needed. 

l_emma 3.2. Let ( X~ ) k ~  be a sequence of  g2 ~, such that 
( i ) there exist a sequence ( sk ) ~,~ in I= [0, I ], such that 

lim O(Xk(Sl,)) = 0  ; 
k ~  + o o  

(ii) 

1 

s u p f  (Xk, Xk) ds< + ~ .  
k e n  

0 

Then 
1 

lim f 1 k~+~ ~ 2 ~ - - ~  ) ds= -t- OO " 
0 

(3.12) 

For the proof see Ref. [4]. 
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I_emma 3.3. Let (Xk)k,~ be a sequence in f21, which weakly converges in 
HL2(L ~N) to x ~ g2 ~ . Then there exist two sequences ( ~k ) k ~  and ( U k ) k ~  such that 

Xk--X=¢k + ~k, 

tkeT~kf2 ', Vk eH~'2 (I, N N) , 

~k--,0 weakly in H~'2(/, RN), 

~k--'0 strongly in HI'2(I ,  N N) . 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

For the proof cf. Ref. [2 ]. 
Now, for any a ~  and for every e> 0 set 

Fa = {Xe$C21 I F ~ ( x ) < a } .  

The following Proposition holds. 

Proposition 3.4. 
( i ) For every e > 0 and ae ~, the set F ~ is a complete metric subspace off21. 

(ii) For every e > 0 and c e ~ ÷, F, satisfies ( P.S. ) c. 

Proof  Let us prove (i). Let ( X k ) k ~  be a Cauchy sequence in F~. Then (Xk)k~ is 
a Cauchy sequence also in H 1"2 (/, F~ N), hence it converges to x e H L2 (/, ~ s) .  (in 
particular (Xk) converges uniformly to x.) Moreover ( X k ) k ~  satisfies (ii) of 
Lemma 3.2. Therefore Lemma 3.2 gives 

inf {O(Xk(S) ), k~N, Se/} > 0 ,  

hence x~ g21 and the proof of (i) is complete. 
Let us prove (ii). Let ( X k ) k ~  be a sequence in ~¢~1 such that 

F~,(Xk)----" C, (3.17) 
k 

IIF'~(Xk)II , 0 .  (3.18) 
k 

By (i) of  Lemma 3.1, we can assume c>0.  By (3.17) and (ii) of Lemma 3.1, 
{Xk}k~ is bounded in H L 2 ( L  ~N); hence, up to considering a subsequence, it 
weakly converges to x e H L2 (L ~ s) .  Moreover, by (3.17 ) and Lemma 3.2, x e g21 . 

In order to prove that {Xk}k~ converges to x strongly, consider {~k}k~ and 
{ Vk}k~ as in Lemma 3.3. From (3.18 ) and the definition of F, it follows that 
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o(1) II~, [I =F'~ (xk)[~]  

<.tk,.f~> ds+ <,~(x,O,k,,,:>"ds+e ¢2(xk) 
0 0 

1 1 

0 

1 

0 

+ 
1 1 

0 0 

Since c>O, {Xk}ke N weakly converges to x and ( ~ k ) k ~  weakly converges to 0 in 
H1'2 (L NN) (and therefore the two convergencies are also uniform), we have 

1 I 

o(l)= J" <.~,~, ~,~> ,:,s+ f <,~(xk), ~,~> <,~(x~), ~k> ds, 
0 0 

and ~ o m ( 3 . 1 3 )  

1 

o(1)= 
0 

1 

<y+~,  ~,,:> ds+ f <~,,:, ~,: > ds 
0 

1 1 

0 0 

(3.19) 

Then, by the weak convergence ofxk to x and o f ~  to 0, and by the strong conver- 
gence of  vk to 0 in H 1,2 (/, • n ), ( 3.19 ) implies 

1 1 

0 0 

and, in particular, 

1 

~ <8,,. 8,~> d~---, o. 
k 

0 
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Hence {~k}k~ strongly converges to 0 in H~'z(I, ~N), SO {Xk}k~ strongly con- 
verges to x. [] 

4. Proof of Theorem 1.3 

In this section we shall prove Theorem 1.3. Towards this goal, we need some 
estimates on the critical points of  the penalized functionals F,, e> 0. 

For every e> 0, let x, be a critical point ofF,,  such that 

F~(x , )<M,  (4.1) 

where M is a constant independent of e. By Theorem 2.8, x, is a critical point of 
J,.a, (cf. (3.10)),  where 2 ,=F , (x , )  and J,.~,(x~) =0.  

Let t, = q~, (x,),  (cf. (2.4) for the definition of q~, 2 e ~ ), then the curve z, = (x,:, 
t~) is a critical point off~.~, =f~l ~, (cf. Theorem 2.2) andf~,a,(z~) =0.  

Hence, for every ~ = ( ~, z) ~ T~ ~r~, = Tx~ £2 t × H1.2 (i, ~ ), 
1 

, f (grad ~(x~), ~) 
0 =f'~.a~(z~)[~1 = f  a,(z~)[~] - e  a ¢3 (x~) ds (4.2) 

0 

As proved in Ref. [ 12 ], z, is a smooth curve and satisfies the equations 

2e 
_17k,= 03(x,) 17~(z,) f o r a n y s e I ,  (4.3) 

where q~(x, t) = ¢ ( x ) ,  and Izq~ is the gradient of q~ with respect to the Lorentzian 
metric ( -, • )~. Multiplying both terms of (4.3) by k, gives the existence of a 
constant H, such that 

g 
H , = ½ ( k , ( s ) , k , ( s ) ) ~  O2(x,(s) ) f o r a n y s d .  (4.4) 

Integrating (4.4) in the interval I gives 
1 I I 

_ T ~ )  ds=f~.~,(z,l_2e f 1 ds 
0 0 0 

1 

0 

The following estimates on the family (z~)~>o hold. 

Lemma 4.1. For every es ]0,1 ], let x~ be a critical point of  F~, such that (4.1) holds. 
Moreover let 2~=F(x~), t~ = ~a~(x~) and z~= (x~, t~). Then 
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(i) sup I Ix~ l l ,<+~  ( c f ( 2 . 1 ) ) ,  
e e  ]0,1]  

(ii) sup lit, Ill < +oo • 
g~]0,1  ] 

Proof (i) follows from (4.1) and (3.2). Moreover by (2.4) with to=0, 

1 

t~(S)=(6(X~),2~)+(2~-~ (6(x~),2~>ds). (4.6) 
0 

Then (4.6) and (i) imply a uniform bound of (t,),~lo.~ 1 in L2(L ~), proving 
(ii). [] 

Now consider the multiplier in Eq. (4.3), 

2e 
u ~ ( s ) -  03(x~(s) ) 

The following lemma holds: 

Lemma 4.2. Assume (4.1). Then 

sup [Itt~llL~< + o o .  (4.7) 
e~]O, l  ] 

Proof For every e~ ]0,I ], let 

he(s) = q~(z~(s) ) =O(x~(s) ) 

and s, be a min imum point for he in L Clearly we have just to prove (4.7) whenever 

inf O(x,(s,))=O. (4.8) 
eE]0 ,1 ]  

By Lemma 4.1. the families (x,),~ ~o, ~j and (t,),~ j o.~l have supports that are uni- 
formly bounded in R N and R, respectively. Hence, there exists a constant c~ > 0 
such that 

nq,(z,(s~)) [~ ,  ~ ]  <Cl [ (.~(s~), ~(s~) > +i2(s~) ] ,  (4.9) 

where Ha,(z) : TzM× TzM~R denotes the Lorentzian Hessian of the function q) 
(see, e.g., Ref. [ 19] for the definition). Moreover, since 0 is a regular value ofq~, 
there exists another constant Cz > 0 ( independent  of e), such that, if e is small 
enough: 
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(Vq~(z,(s,)  ), V~(z~(s,)  ) )z = (grad O(x~(s,) ), grad O(x,(&) ) ) > c2~0. 

(4.10) 

Since s, is a minimum point ofh,, by (4.9) and (4.3), 

O<h" (s,) =Ha,(z~(s~) ) [~(s , ) ,  ~,(s,) ] + (Vqb(z~(&) ), Dsz~(s~) )_- 

_<c, [ (~,(s~), ~(s~) ) + i~(s~) 2 ] 

2e 
03(x~(s, ) ) (grad O(x,(s ,)  ), grad ~(x~,(s,) ) ) . 

Hence, by (4.10), if e is small enough, 

2e < c__l [ (2 , ( s~) ,2~(s , ) )+i , ( s~)Z  ] . (4.11) 
I t , ( s , )=  O3(x , ( s , )  ) _ c2 

On the other hand, by ( 4.6 ), ( 1.7 ) and ( 4.1 ) ( recall that 2, = F~ (x~) ), 

ie(Se)2~-~C3 "~-C 4 ( X(Se) , L (Se )  ) , (4.12) 

where c3 and c4 are positive constants independent ofe. Now, by (4.4) and (2.1), 

( L ( s , ) , L ( s , ) )  

= 2 H , - 2 ( ~ ( x , ( s , ) ) , ~ c , ( s , ) ) i , ( s , ) + i , ( s , ) : +  e (4.13) 
O~(x~(s , ) )  ' 

and substituting (4.6) in (4.13), (3.1), (4.1), (4.5) and Lemma 4.1 give 

(:~(s~), ~ ( s , )  ) <c5 +c6 ~02 (x,(s~)) , (4.14) 

where c5 and c6 are positive constants independent of e. 
Finally (4.1 1 ), (4.12 ) and (4.14 ) give 

2e e 
Ite(Se)= ~)3(Xe(Se) ) <-~C7d1"C8 (~2(Xe(St:) ) , 

where c7 and c8 are positive constants independent of e, giving (4.7). 

Corollary 4.3. 

lim e = 0 .  
~.o 0 2 ( ~ ( s )  ) L~ 

Corollary 4.4. The fami ly  o f  real functions It, ( s ) = 2e / 0 3 ( x,  ( s ) ) weakly converges 
to It (s) in L z (L ~ ). Moreover It (s) is positive almost everywhere and i f  
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inf{O(x~(so) : e s ]O,1]}>O,  

then lt(S) =-0 in a neighborhood o f  So. 

From Lemmas 4.1 and 4.2, it is possible to deduce the following: 

Proposition 4.5. Let x~ be a critical point o f  F, satisfying (4.1). Choose 2~=F~(x,) 
and t~ = ~ , (  x ,)  . Then there exists a sequence ek---~ O +, such that, setting x~ =x~k 

and tk = t,~, 
(i) {Xk}k~ converges to x in HL2(L R N) , 

(ii) { tk }k~  converges to t in HL2 ( I, ~ ) , 
(iii) x ( s ) ~ g 2 ' ( M o u O M o , x o ,  x . )  ~ ' = 1 2 1 ( / ~ o , X o ,  Xl) , 
(iv) i f  z =  ( x, t ), then for every ~= ( ~, z ) ~ Tx~I  x H~,Z ( L ¢~ ) , 

1 1 

(~ ,~>~ds= I # ( s ) ( 7 ~ ( z ) , ~ ) ~ d s ,  (4.15) 
0 0 

(v) x~H2'2(L pN) and t~H2,2(/, RN), consequently x and t are o f  class C ~. 

Proof. By Lemma 4.1 there exist two sequences Xk =--X,k and tk = G,  weakly con- 
vergent to x and t, respectively. Arguing as in the proof of Proposition 3.4 allows 
us to get the strong convergence, proving (i) and (ii). Moreover, (iii) follows by 
the assumption that Mow OMo is complete with respect to the Riemannian metric 
( -, • ). Now let us prove (iv). 

Let ( =  (~, z)~ T x ~ X  H~ '2 (L ~ ). Moreover, let G be the orthogonal projection 
of ~ on the tangent space of Mo at Xk, SO ~k ~ Txk ~ = Txkl21 (because the support 
Of Xk is included in Mo). Then 

O=f'k,ak(Zk) [ (~k, z) ] 
1 

= [ [ ) + 
0 

+ ds 

I 

- _1 IZk(S) (grad ¢(Xk),  ~k ) ds .  (4.16) 
0 

Since ~k weakly converges to ~ in H L2 (L ~ N) (cf., e.g., Ref [2] ), taking the limit 
in (4.16) gives (4.15). 

Finally by (4.15 ) and the regularity argument used in Lemma 4.7 ofRef. [ 12 ], 
we deduce that xe H 2'2 (/, ~ N) and tEH  2"2 (I, ~ ), proving (v). [] 
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Lemma 4.6. Assume that M has light-convex boundary. Let x, be a critical point o f  
F,, such that (4.1.) holds. With the same notation o f  Proposition 4.5, there exists 
a sequence {Zk= (Xk, tk)}k~ converging in H 1,2 to a lightlikegeodesic z= (x, t) in 
M such that 

x(0)=Xo,  x ( l ) = x ~ ,  t ( 0 ) = 0 ,  t (1 )=F+ (x).  

In particular, by Theorem 2.8, x is a critical point ofF+. 

Proof. Consider a sequence {Zk}k~ given by Proposition 4.5 and its limit curve 
z=  (x, t). Using the light-convexity of OMwe shall show that the limit curve z=  (x, 
t) does not touch the boundary OM and it is a lightlike geodesic, proving Lemma 
4.6. 

Towards this goal let us begin by noting that, by (4.15 ), 

( Vs~, ~) z = - It(s) (VCP(z), ~) ~ for almost every s~I .  (4.17) 

Fix seI. From Corollary 4.4, 

z (s )¢OM implies (V,~(s) ,~(s) )=(s)=O.  

Suppose z(s)~OM. Then s is a min imum point of ~ ( z ( s )  ) and s~ ]0,1 [. Then, 
since z is of class C ~ (cf. (v) of Proposition 4.5) and s~ ]0,1 [, (Vq~(z), k) =0.  
Therefore 

(IZs~(S), ~(s) ) z(s) =0 for almost every s e I .  

Hence, since z is of class C ~, there exists a constant EeR such that 

( k ( s ) , k ( s ) ) z ( s ) = E  for any s e I .  (4.18) 

Since for every keN, 
1 1 

o~fek'Ak(Zk)~ I (Zk'Zk~ ds+~'k I 1 z ~ d s ,  
0 0 

Corollary 4.3 and (i), (ii) of Proposition 4.5 give 
1 

~ <~,~>z~=O. 
0 

Therefore E =  0 and z is a lightlike curve. 
Now, let So be a point such that z ( So ) e d M and It (So) is well defined ( recall that 

It is defined almost everywhere). Since Soz]O,l[ is a min imum point of 
h (s) = ~ ( z ( s )  ) we have, 

O<h" (So) =H~,(Z(So) ) [/(So), k(So) ] + < Vq)(Z(So) ), V,~(So) >~ 

(by (4.15))  
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=Hc,(Z(So) ) [Z(So), k(So) ] - / t  (s0) (grad (~(X(So) ), grad O(X(So) ) ) • 

Then 

/t(So) (grad ~)(X(So) ), grad O(X(So) ) ) <H, ( z ( so )  ) [k(So), k(So) ] • (4.19) 

Since k(So) ~ T~(so)OM is a lightlike vector and OM is light convex (cf. Definition 
1.1 ) it is easy to see that 

Ha,(Z(So) ) [k(So), k(So) ] < 0  ; 

therefore, by (4.19 ), 

P(So) (grad O(x(so) ), grad O(X(So) ) ) < O, 

hence 

#(So)___0. 

On the other hand, by Corollary 4.4/~(s) -> 0 almost everywhere, then 

/t(s) = 0  for almost every s d .  

Then z satisfies the equation 

17sk=0 for almost every s~I .  

which implies (using standard regularity arguments) that z is smooth and satisfies 

17sk=0 for any se I .  

Then z is a lightlike geodesic. Moreover, z cannot touch the boundary, because 
OMis light convex (cf. Definition 1.1 ) and Xo, Xl¢OMo. [] 

Proof o f  Theorem 1.3. For every e ~ ]0,1] the functional F+ is bounded from 
below and satisfies the Palais-Smale condition at every level c ~  +. Then F~ has 
a min imum point x,, such that 

0 < i n f F < m i n  F, = F , ( x D  <F,(X)  <F ,  ( ~ ) ,  
£2L .Qt 

where 2 is a fixed C~-curve joining xo with x~ in Mo. Applying Lemma 4.6 gives 
immediately the proof  of Theorem 1.3. [] 

5. Proof of Theorem 1.5 

In this section we shall prove Theorem 1.5. By the variational principle proved 
in Section 2, it will be sufficient to prove the existence of  a sequence {xg}g~a of 
critical points o fF+  such that 
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lira F+ (xk)=  + o e .  (5.1) 
k ~ + ~  

Proof of Theorem 1.5. Assuming that Mo is not contractible, Fadell and Husseini 
have proved in Ref. [ 10 ] that there exists a sequence {K,,}m~ of compact subsets 
of g2 ~, such that 

lim cata, (Kin) = + ~ ,  (5.2) ,~+~ 

where cata, (Kin) is the Lusternik and Schnirelman category of Km in t21 , i.e., the 
minimal integer positive number of closed contractible (in t21 ) subsets of tT which 
cover ~ (cf., e.g., Ref. [23 ] for definition and standard properties of the Luster- 
nik and Schnirelmann category). 

The same proof of Lemma 4.3 of Ref. [4] shows that 

catp, ( F ~ )  < + ~  for every a c e ,  (5.3) 

where F% = {xeg21 I F+ (x) <a) .  Now fix a ~ ,  and set 

F,.,~={xeg21l F~(x)>ot} . 

For any B c  F~ ={xeI2 ~ : F~(x)<~}, since F~ c F~., by the monotonicity of 
the Lusternik and Schnirelmann category, 

cate, (B) < cata~ (F~_).  

Therefore choosing 

m =cate ,  ( F g )  + 1 

gives 

B~F~.~¢~ for any Bc~12 ~ suchtha tca ta ,  (B)>m. (5.4) 

By (5.2), since there exists Kin, compact subset of iT,  such that 

cata, (K) > m ,  

the number  

c,,., = inf{sup F~(B) : cate, (B) > m} ( 5.5 ) 

is well defined and 

Cm.,<sup F~(Km) < F,(Km) , 

while, by ( 5.4 ), 

Cm, e ~-~ Ol . 

Moreover, by well known critical point theorems (cf., e.g., Refs. [21,22 ] ), since 
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F, satisfies the Palais-Smale condition at the level Cm,,, there exists a critical point 
x, of F~, such that F, ( x , )  =cm,,. Then, by Lemma 4.6, there exists a subsequence 
of the family (x,) , ,  ]o,~j converging to a critical point x ,  o fF+.  Since 

F+ (x~) > ot , 

by the arbitrarity of  a (5.1) is proved and the proof  of Theorem 1.5 is 
complete. [] 

6. Proof of Theorem 1.12 

In this section we shall prove Theorem 1.12 and get the Morse relations for the 
lightlike geodesics joining (Xo, 0) and the timelike curve 7={(x~, s), s ~ } ,  as- 
suming that (Xo, 0) and 9' are nonconjugate (cf. Definition 1.9). 

We begin recalling some results proved in Ref. [ 13 ] for stationary Lorentzian 
manifolds, which extend the analogous results proved in Ref. [ 8 ] for static Lor- 
entzian manifolds (cf. also Ref. [ 17] ). 

Let z=  (x, t) : [0,1 ] ~ M  be a geodesic on a stationary Lorentzian manifold. 
Then x is a critical point of the functional J~, where 2 = t (  1 ). For the geodesic z 
the geometric index/z(z, f ) ,  i.e. the number  of conjugate points to z(0)  along 
zl jo, l [, counted with their multiplicity (see Definition 1.9), is well defined. In 
the same way the geometric index/z(x, Ja) for a critical point x of J~ can be de- 
fined (cf. Ref. [ 8,13 ] ). The following Theorem is essentially proved in Ref. [ 8 ]: 

Theorem 6.1. Let z = (x, t) be a geodesic joining two points Zo = (x, to ) and z~ = ( xl,  
tl ). Then 

l t ( z , f ) = l t ( x , J ~ )  , (6.1) 

where 2 = t (  1 ). 

Moreover, the Morse index Theorem holds for the functional Ja defined on t21. 
We recall that the Morse index of  a critical point x of  a smooth functional J (de- 
noted by m (x, J)  ) defined on a Hilbert manifold X, is the maximal dimension of 
the subspaces of TxX on which the Hessian J" (x )  : T x X x  TxX--,R is negative 
definite. 

The following result is a generalization of the Morse index Theorem for the 
geodesics o fa  Riemannian manifold and its proof  is in Ref. [ 13 ]. 

Theorem 6.2. Let  x be a critical point o f  Jx, then the Morse index m (x, J~ ) &finite, 
and 

lU(X, J a ) = m ( x ,  Ja) . (6.2) 
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Notice that Theorems 6.1 and 6.2 imply that the geometric index of a geodesic 
joining two given events of a stationary Lorentzian manifold is finite (see Re- 
mark 1.9). 

To prove Theorem 1.12 the following preliminary results are needed. 

Lemma 6.3. let :~ be a critical point of the functional F+, 2 =F+ (Y), m (.~, F+ ) and 
m (X, Ja) be the Morse indices of:~ as criticalpoint ofF+ and J~, respectively. Then 

m(X,F+ )=m(X,J~) . (6.3) 

Proof Differentiating the equality H(x, F+ (x))  =0 (cf. (2.8), (2.9) and Theo- 
rem 2.3) gives 

OH (x, F+ (x))  + OH Ox ~ (x ,F+(x) )F+(x)=O foranyxeg21 . (6.4) 

Differentiating (6.4) gives 

OZH 202H 
0 = ~x 2 (x, F+ (x))  + ~ (x, F+ (x))  [V+ (x) ] 

02H OH 
+ ff2T (x, F+ (x))  [F+ (x) ] [F+ (x) ] + ~ (x, F+ (x))V'+ (x) ; 

therefore, since F+ (~) = 0, 

OZH OH 
0= ~ (~, F+(X) )+  ~ (X,F+ (g))F% (~) 

(by (2.8) and (2.9)) 

OH 
=J~ ' (x )  + -b-2- (x, F+ ( x ) ) F ' ;  (X) .  

Then 

OH (•, F+ (X))F'+ (X) (6.5) 
J~'(~) = - 0~ 

and combining (6.5) with (2.19) gives (6.3). rq 

Prolmsition 6.4. I f  ( xo, O) and ~= { ( Xo, s ), seR} are nonconjugate, F+ is a Morse 
function, i.e., its critical points are nondegenerate. 

Proof Let x be a critical point of F+. Then x is a critical point of J~, where 
2 = F+ (x). By (6.5) and (2.19 ) x is a nondegenerate critical point for F+ if and 
only if it is a nondegenerate critical point for J~. Now, let z= (x, 0~(x) ) be the 
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lightlike geodesic associated to x. By the nondegeneracy assumptions on Zo and 
y (s), z is a nondegenerate critical point off~. Then, arguing as in Ref. [ 8 ] (where 
the relation between J~' and f ]' is pointed out) ,  we see that x is a nondegenerate 
critical point for J~, proving Proposition 6.4. [] 

Unfortunately, we cannot immediately get the Morse relations, because F+ does 
not satisfy the Palais-Smale condition. For this reason the following penalized 
functional defined on g2 ~ is needed. Let 

~ ( a ) = e ° -  ( l + a +  ½a 2) , 

and, for every e> 0, 

~ , (a)  = { ~ ( a o l / e ) i f a >  l / e ,  
if a <  1/e .  

Moreover, let ff~ be the functional (3.11 ), where the penalization term 
ef t (1 /OZ(x)  ) ds is substituted by f~ t~ (1 /02(x )  ) ds, i.e. 

f t ,(x) = ( k , k )  ds+ (~(x ) , k )Zds+ ~e(1/(~2(X)) ds 
0 0 

1 

+ _t (~(x), k)  ds. (6.6) 
l *  

0 

Remark 6.5. Let cER be a regular value of F+. If e is sufficiently small, c is a 
regular value of if,. Indeed if {X,,}k~ is a sequence such that 

f f~(x,~)=c and P',k(X,k)=0 (ek ' 0 + ) ,  
k 

{X~k}k~ converges, up to a subsequence, to a critical point x of F+ such that 
F+ (x) = c  (cf. Lemma 4.6). 

Using the nondegeneracy of the critical points of F+, the following lemma can 
be proved. 

Lemma 6.6. Assume that all the critical points ofF+ are nondegenerate and f i x  
c ~ .  Then 
(i) on the sublevel {x~ K2 ~ : F+ (x) < c} there is onlyfinite number o f  critical points 

ofF+; 
(ii) there exists Co=Co(C) > 0  such that for any e~ ]0,eo], x is a critical point ofF+ 

on {xsg2~: F+(x)<c} ,  i f  and only i f  it is a critical point o f  P~ on 
{ x ~  1 : P~(x) <c}. Moreover, 

P~(x )=F+(x)  and m ( x , P ~ ) = m ( x , F + ) .  (6.7) 
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Proof Any critical point of F+ is isolated (because it is nondegenerate).  More- 
over, the same proof  of Proposition (3.4) (ii) and the light-convexity of OMo 
show that {xeI2 ~ • F+ (x) <c  and F +  (x) =0} is compact, giving (i). The light- 
convexity of OMo and the form of the penalization term in F, gives also (ii). [] 

From Lemma 6.6 the following Morse relations on the sublevels of if, hold. 

Theorem 6.7. Assume that all critical points ofF+ are nondegenerate. Let c be a 
regular value of F+ and set Z(F+,  c) ={x~FC+ I F'+ (x) =0}. Then there exists 
go (c) > O, such that, for any e~ ] O,eo (c) ], 

rmtx'F+)=Pr(ff~)+ ( l +r)Q~,c(r) , (6.8) 
x~Z(F+ ,c) 

where Pr ( P ~ ) is the Poincarb polynomial of  ff ~ = {x~I2 ~ I P , (x)  <c} and Q,,c is a 
formal series with natural coefficients (possibly + ~ ). 

Proof By Lemma 6.6, i fe  is small enough, c is a regular value for if, and if, con- 
tains only nondegenerate critical points under the level c. Since ff~ satisfies the 
Palais-Smale condition at every level, we have 

x~Z~,c) rm~x'&)=Pr( ffc) + ( 1 + r)Q~,c(r) , 

for a suitable formal series Q,, c (cf., e.g., Ref. [7 ] ). Moreover, ife is small enough, 
Lemma 6.5 gives also 

Z ( P , , c ) = Z ( F + , c )  and m ( x , P ~ ) = m ( x , F + )  f o r a n y x s Z ( F + , c ) ,  

proving (6.8). [] 

Now, since the critical points o fF+  do not touch the boundary, the form of the 
penalization term in (6.6) and the same techniques used in Ref. [ 13 ] allow us to 
get the following Lemmas. 

Lemma 6.8. For every regular value c ofF+ there exists Co(C) > 0 such that, for any 
e~ ]0,to(C) ] the sublevel F~+ is a weak deformation retract of  P ~. 

Lemma 6.9. Let c2 > c l be regular values for F+. Then there exists eo = ~o ( c~, c 2 ) > 0 
such that, for any ee ]0, Co] the pair (F~_, F~_ ) is a weak deformation retract of  
the pair ( ff ~ , ff p ). 

Now we are finally ready to prove Theorem 1.12. 

Proof of  Theorem 1.12. By (6.8) and Lemma 6.8, for any c, regular value o fF+ ,  
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rm(x,F+ )=Pr(FC)+ ( l +r )ac ( r  ) , (6.9) 
x ~ Z ( F +  ,c) 

where Qc is a formal series with natural coefficients (possibly + ~ ). Moreover, 
using standard arguments of algebraic topology, cf., e.g., Refs. [ 7,13 ], since F+ 
is a Morse function and Lemma 6.9 holds, sending c to + ~ gives 

rm~X, F+ )=Pr( g2' ) + ( l +r)Q(r)  , (6.10) 
x e Z ( F +  ,+¢o)  

where again Q is a formal series with natural coefficients. 
Now denote by Z + (Zo, y) the set of the null geodesics z= (x, t) (from [0,1 ] to 

M) joining Zo and y and such that t( 1 ) >  0. Then by (6.10), Theorems 6.1, 6.2 
and Lemma 6.3, we finally get 

rU~z)=Pr(g21) + ( l +r)Q(r )  , 
z ~ Z  + (zo ,y) 

proving Theorem 1.12. [] 

7. Applications to the Kerr space-time 

Consider the Kerr space-time outside of the "stationary limit surface", i.e. the 
space-time 

M={( r ,  O, 0) : r > m + x / m 2 - a 2  cos2O}× R (7.1) 

with metric 

( ~  ) 2mr 
ds2=2 +dO 2 -F ( r2+a  2) sinZOdqJZ-dt2+ T (a sinZOdq~-d/) 2, 

(7.2) 

where 

2=2(0 ,  r) = r 2 + a  2 cos2O, d=A(r )  = r 2 - 2 m r + a  2 . 

Here m > 0 represents the mass of the rotating body responsible for the gravi- 
tational field, ma is the angular momen tum as measured from infinity (see, e.g., 
Ref [ 15 ] ) and a 2 < m 2. If a = 0, the space-time (7.1) with metric (7.2) is the 
Schwarzschild space-time. 

When a is small enough there are open subsets of Mhaving light-convex bound- 
ary. More precisely the following proposition holds [whose proof can be carried 
out as in Ref. [ 17], using the Hessian of the function ~a(r, O) = ½ ( r 2 - 2 m r + a  2 
cos20) ]: 

Proposition 7.1. Let ro be the smallest zero greater than 2m o f  the equation 
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9 m Z r 4 ( r - m ) ( r - 2 m ) + ( r - 3 m ) [ r 3 + 3 m ( r - m ) ( r - 2 m ) ] = O .  (7.3) 

Let e : ~ ÷ ---,~ ÷ be a strictly decreasing function and 

eo =lim e ( a )  . (7.4) 
a ~ O  

Assume 

0<e0 < ( r o - m ) 2 - m  2 . (7.5) 

Then there exists ao > 0 such that, for every a satisfying [ a I < ao, the boundary of  

M ~ = { r > m + x / m 2 + e ( a ) - a  z cos2O} × R  (7.6) 

with metric (7.2), is light-convex. 

The  Kerr  metr ic  satisfies assumpt ions  ( 1 .5 ) - (1 .7 )  for l al sufficiently small. 
Then  Theorems  1.3, 1.5 and 1.12 hold for 7.1, if I a l is sufficiently small. 
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